
Exercise 1 Internal Sensors

- 1. Sensor characteristics
 - (a) Four sensor characteristics
 - Range (Messbereich)
 - Resolution (Auflösung)
 - Sensitivity (Empfindlichkeit)
 - Repeatability (Wiederholgenauigkeit)
 - Bandwidth (Bandbreite)
 - Linearity (Linearität)
 - Response Time (Reaktionszeit)
 - (b) Three types of measurement errors
 - Bias (Offset)
 - Hysteresis (Hysterese)
 - Random noise (Zufälliger Fehler)
 - (Temperature) drift (Drift)
- 2. Quadrature encoder output

- 3. Advantage of Gray code
 - Problem: During the transition between two positions two bits might not change at the exact same time, causing erroneous transient states. In Gray-code encoded discs only one bit changes between two adjacent positions
 → Transient states do not occur.
- 4. One advantage and one disadvantage each for accelerometers and gyroscopes

	Advantage	${ m Disadvantage}$
Accelerometer	Not susceptible to drift	Susceptible to errors caused by lateral accelerations
Gyroscope	Not susceptible to errors caused by lateral accelerations	Prone to orientation drift due to numerical integration

- 5. Two filter algorithms for fusing acceleration and gyroscope readings
 - Kalman filter **or** Bayes filter
 - Complementary filter
- 6. Formula and computation for R_2
 - Formula: $R_2 = \frac{R_1 U_2}{U_1}$
 - Value: $R_2 = \frac{10\Omega * 4V}{2V} = 20\Omega$

Exercise 2 External Sensors

1. Advantage of proximity sensors:

Proximity sensors can detect an object before contact is established. No interaction is required. No force is exerted.

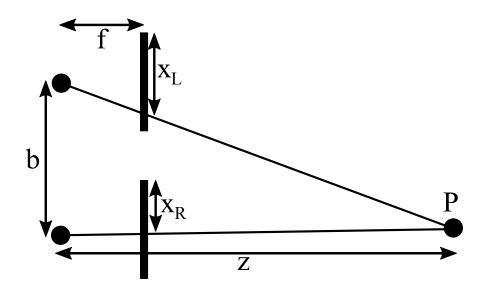
- 2. Capacitive proximity sensor
 - phenomena: Electric field
 - *interaction*: no force interaction, change in dielectric constant
 - what is measured: change in capacity
 - *how is it measured*: amount of charge that is transferred to the capacitor for a given voltage
- 3. Computation of depth information:

Features are extracted in both camera images The disparity between the two images is used to triangulate the position of the features.

- 4. Principal drawing of a stereo vision system:
- 5. Calculation of the disparity d:

 $d = x_L - x_R$ or $d = x_R - x_L$.

6. Equation for calculating Z:


$$Z = \frac{f \cdot b}{d}$$

7. Value of Z:

 $Z = \frac{1 \text{cm} \cdot 5 \text{cm}}{1 \text{mm}} = 50 \text{cm}$

 Working principle of spacial codification: A spacial pattern is projected onto the scene. The distortion of the projected pattern is used to calculate the depth information.

5

Exercise 3 Active Vision and Gaze Stabilization

- 1. Active vision: Manipulate the camera viewpoint in order to enhance the current perception. Makes ill-posed problems tractable and can resolve ambiguity or occlusion problems.
- (a) Vestibulo-Ocular Reflex (VOR). Advantages: High Sampling Rate and easy too implement. Limitations: Controls only the eye joints, cannot compensate for external perturbations and requires an IMU.
 - (b) Optokinectic reflex (OKR). Advantages: can stabilize the image in a dynamic environment. Limitations: low input frequency and controls only the eye joint.
 - (c) Inverse kinematics control (IK). Avantages: Reactive and controls both head and eye joints. Limitations: Requires a target point, stabilizes only self-induced perturbations and depends on the accuracy of the robot's kinematic model.
- 3. The control output of the VOR is given by

$$\dot{q} = -k_{vor} \cdot [\omega_{yaw} \omega_{pitch}]^T.$$

Exercise 4 SLAM

1. (a) Jacobi H_t :

$$H_t = h'(\mathbf{x}_t) = \frac{\partial h}{\partial \mathbf{x}_t} = \left(\left(\frac{\partial h_i}{\partial x_{R,t}} \right) \left(\frac{\partial h_i}{\partial y_{R,t}} \right) \right) \quad \text{with} \quad i \in 1, 2, 3$$

$$\frac{\partial h_i}{\partial x_{R,t}} = \frac{\partial (e^{-\|\mathbf{m}_i - \mathbf{x}_t\|^2})}{\partial x_{R,t}} = \frac{\partial (e^{-((x_{m,i} - x_{R,t})^2 + (y_{m,i} - y_{R,t})^2)})}{\partial x_{R,t}} = (-1) \cdot 2(x_{m,i} - x_{R,t}) \cdot (-1) \cdot e^{-\|\mathbf{m}_i - x_{R,t}\|^2}$$

$$\frac{\partial h_i}{\partial y_{R,t}} = \frac{\partial (e^{-\|\mathbf{m}_i - \mathbf{x}_t\|^2})}{\partial y_{R,t}} = \frac{\partial (e^{-((x_{m,i} - x_{R,t})^2 + (y_{m,i} - y_{R,t})^2)})}{\partial y_{R,t}} = (-1) \cdot 2(y_{m,i} - y_{R,t}) \cdot (-1) \cdot e^{-\|\mathbf{m}_i - \mathbf{x}_t\|^2}$$

4

$$H_{t} = \begin{pmatrix} 2(x_{m,1} - x_{R,t}) \cdot e^{-\|\mathbf{m}_{1} - \mathbf{x}_{t}\|^{2}} & 2(y_{m,1} - y_{R,t}) \cdot e^{-\|\mathbf{m}_{1} - \mathbf{x}_{t}\|^{2}} \\ 2(x_{m,2} - x_{R,t}) \cdot e^{-\|\mathbf{m}_{2} - \mathbf{x}_{t}\|^{2}} & 2(y_{m,2} - y_{R,t}) \cdot e^{-\|\mathbf{m}_{2} - \mathbf{x}_{t}\|^{2}} \\ 2(x_{m,3} - x_{R,t}) \cdot e^{-\|\mathbf{m}_{3} - \mathbf{x}_{t}\|^{2}} & 2(y_{m,3} - y_{R,t}) \cdot e^{-\|\mathbf{m}_{3} - \mathbf{x}_{t}\|^{2}} \end{pmatrix}$$

The general solution is not required. Values for m_1 , m_2 and m_3 can already be filled in.

(b) Evaluate at
$$\mathbf{x}_t = (5,7)^T$$
:
 $\|\mathbf{m}_1 - \mathbf{x}_t\|^2 = ((1-5)^2 + (11-7)^2) = (4^2 + 4^2) = 16 + 16 = 32$
 $\|\mathbf{m}_2 - \mathbf{x}_t\|^2 = ((2-5)^2 + (12-7)^2) = (3^2 + 5^2) = 9 + 25 = 34$
 $\|\mathbf{m}_3 - \mathbf{x}_t\|^2 = ((3-5)^2 + (13-7)^2) = (2^2 + 6^2) = 4 + 36 = 40$

$$H_t((5,7)^T) = \begin{pmatrix} 2(1-5) \cdot e^{-\|\mathbf{m}_1 - \mathbf{x}_t\|^2} & 2(11-7) \cdot e^{-\|\mathbf{m}_1 - \mathbf{x}_t\|^2} \\ 2(2-5) \cdot e^{-\|\mathbf{m}_2 - \mathbf{x}_t\|^2} & 2(12-7) \cdot e^{-\|\mathbf{m}_2 - \mathbf{x}_t\|^2} \\ 2(3-5) \cdot e^{-\|\mathbf{m}_3 - \mathbf{x}_t\|^2} & 2(13-7) \cdot e^{-\|\mathbf{m}_3 - \mathbf{x}_t\|^2} \end{pmatrix} = \begin{pmatrix} -8 \cdot e^{-32} & 8 \cdot e^{-32} \\ -6 \cdot e^{-34} & 10 \cdot e^{-34} \\ -4 \cdot e^{-40} & 12 \cdot e^{-40} \end{pmatrix}$$

2. EKF SLAM vs. GraphSLAM

Only four differences are required.

- (a) EKF SLAM is an online SLAM algorithm. It calculates the current robot pose every iteration. GraphSLAM is a full/offline SLAM algorithm. It collects information online and calculates the robot trajectory offline.
- (b) EKF represents its state as a Gaussian distribution (mean and covariance, μ, Σ). GraphSLAM represents its state as a sparse graph. Robot poses and landmarks are nodes, edges represent soft constraints (motion and measurement).
- (c) EKF SLAM uses an Extended Kalman filter to estimate the robot pose. GraphS-LAM uses constrained optimization to find an optimal robot pose trajectory.
- (d) EKF SLAM is proactive. Every new information is directly incorporated into the pose estimate. GraphSLAM is lazy. New information is collected until a batch process produces a pose trajectory.
- (e) EKF SLAM uses a constant amount of memory over time (O(1)). GraphSLAM requires more memory, the longer data is collected (O(t)).

2 P.

- 3. FastSLAM
 - (a) RBPF vs. traditional particle filter:

RBPF uses a particle filter to track one part of the state and a Gaussian filter to track others (e.g. an EKF).

(b) FastSLAM particle:

In FastSLAM, a single particle contains the robot trajectory $\mathbf{x}_{1:t}$ and M landmark estimations for each landmark. Each landmark estimation uses EKF representation μ_j, Σ_j (mean and covariance).

Exercise 5 Feature Extraction

- 1. Reason for falsely detected edges: The Moravec operator is not invariant to orientation. It is sensitive for points on edges, that have a deviation to the predefined shift-directions
- 2. Right image operator: Harris Corner

3. Image Structure Tensor: *M* is a 2× 2 matrix The two eigenvalues λ₁ and λ₂ of *M* give information about the distribution of gradients: Flat region: λ₁ and λ₂ small Edge region: λ₁ large and λ₂ small (or swapped) Corner region: λ₁ and λ₁ large

4. MSER Algorithm: Apply a series of thresholds to calculate binary images. Find regions that do not vary in a large number of threshold-steps and do not change shape and size

1 P.

1 P.